Lambda的研究

Lambda的研究

1、filer

public void test01() {
    List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
    // 遍历输出符合条件的元素
    list.stream().filter(x -> x > 6).forEach(System.out::println);
    // 匹配第一个
    Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
    // 匹配任意(适用于并行流)
            // 串行流:适合存在线程安全问题、阻塞任务、重量级任务,以及需要使用同一事务的逻辑。
    // 并行流:适合没有线程安全问题、较单纯的数据处理任务。
    Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
    // 是否包含符合特定条件的元素
    boolean anyMatch = list.stream().anyMatch(x -> x < 6);
    System.out.println("匹配第一个值:" + findFirst.get());
    System.out.println("匹配任意一个值:" + findAny.get());
    System.out.println("是否存在大于6的值:" + anyMatch);
}

2、to list

public class Person {
    private String name;    // 姓名
    private int salary;     // 薪资
    private int age;        // 年龄
    private String sex;     // 性别
    private String area;    // 地区
}

public void test03() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
            .collect(Collectors.toList());
    System.out.print("高于8000的员工姓名:" + fiterList);
}

3、max

public void test04() {
    List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
    Optional<String> max = list.stream().max(Comparator.comparing(String::length));
    System.out.println("最长的字符串:" + max.get());
}

4、sort

public void test05() {
    List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
    // 自然排序
    Optional<Integer> max = list.stream().max(Integer::compareTo);
    // 自定义排序
    Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o1.compareTo(o2);
        }
    });
    System.out.println("自然排序的最大值:" + max.get());
    System.out.println("自定义排序的最大值:" + max2.get());
}

public void test06() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
    System.out.println("员工工资最大值:" + max.get().getSalary());
}

5、count

public void test07() {
    List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
    long count = list.stream().filter(x -> x > 6).count();
    System.out.println("list中大于6的元素个数:" + count);
}

6、对象转换

public void test09() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    // 不改变原来员工集合的方式
    List<Person> personListNew = personList.stream().map(person -> {
        Person personNew = new Person(person.getName(), 0, 0, null, null);
        personNew.setSalary(person.getSalary() + 10000);
        return personNew;
    }).collect(Collectors.toList());
    System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
    System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    // 改变原来员工集合的方式
    List<Person> personListNew2 = personList.stream().map(person -> {
        person.setSalary(person.getSalary() + 10000);
        return person;
    }).collect(Collectors.toList());
    System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
}
一次改动前:Tom-->8900
一次改动后:Tom-->18900
二次改动前:Tom-->18900
二次改动后:Tom-->18900

7、转stream

public void test10() {
    List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
    List<String> listNew = list.stream().flatMap(s -> {
        // 将每个元素转换成一个stream
        String[] split = s.split(",");
        Stream<String> s2 = Arrays.stream(split);
        return s2;
    }).collect(Collectors.toList());
    System.out.println("处理前的集合:" + list);
    System.out.println("处理后的集合:" + listNew);
}

8、规约
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

public void test11() {
    List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
    // 求和方式1
    Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
    // 求和方式2
    Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
    // 求和方式3
    Integer sum3 = list.stream().reduce(0, Integer::sum);
    // 求乘积
    Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
    // 求最大值方式1
    Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
    // 求最大值写法2
    Integer max2 = list.stream().reduce(12, Integer::max);
    System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
    System.out.println("list求积:" + product.get());
    System.out.println("list求和:" + max.get() + "," + max2);
}

 public void test12() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    // 求工资之和方式1:
    Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    // 求工资之和方式2:
    Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
            (sum1, sum2) -> sum1 + sum2);
    // 求工资之和方式3:
    Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
    // 求最高工资方式1:
    Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
            Integer::max);
    // 求最高工资方式2:
    Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
            (max1, max2) -> max1 > max2 ? max1 : max2);
    System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
    System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
}

9、归集
即toList/toSet/toMap

public void test13() {
    List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
    List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
    Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person(null, 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", null));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
            .collect(Collectors.toMap(Person::getName, p -> p));
    System.out.println("toList:" + listNew);
    System.out.println("toSet:" + set);
    System.out.println("toMap:" + map);
    Map<String, String> collect2 = personList.stream().collect(Collectors.toMap(Person::getName, Person::getArea));
    System.out.println(collect2);
    Map<String, String> collect = personList.stream().collect(Collectors.toMap(Person::getName, Person::getArea));
    System.out.println(collect);
}

10、统计
count/averaging

public void test14() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    // 求总数
    Long count = personList.stream().collect(Collectors.counting());
    // 求平均工资
    Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
    // 求最高工资
    Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
    // 求工资之和
    Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
    // 一次性统计所有信息
    DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
    System.out.println("员工总数:" + count);
    System.out.println("员工平均工资:" + average);
    System.out.println("员工工资总和:" + sum);
    System.out.println("员工工资所有统计:" + collect);
}

11、分组
partitioningBy/groupingBy

public void test15() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 18, "male", "New York"));
    personList.add(new Person("Jack", 7000, 18, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 18, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 18, "female", "New York"));
    personList.add(new Person("Owen", 9500, 18, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 18, "female", "New York"));
    // 将员工按薪资是否高于8000分组
    Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
    // 将员工按性别分组
    Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
    // 将员工先按性别分组,再按地区分组
    Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
    System.out.println("员工按薪资是否大于8000分组情况:" + part);
    System.out.println("员工按性别分组情况:" + group);
    System.out.println("员工按性别、地区:" + group2);
}

12、joining
joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public void test16() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
    System.out.println("所有员工的姓名:" + names);
    List<String> list = Arrays.asList("A", "B", "C");
    String string = list.stream().collect(Collectors.joining("-"));
    System.out.println("拼接后的字符串:" + string);
}

13、reducing
Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

public void test17() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
    Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
    System.out.println("员工扣税薪资总和:" + sum);
    // stream的reduce
    Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    System.out.println("员工薪资总和:" + sum2.get());
}

14、排序
sorted,中间操作。有两种排序:
sorted():自然排序,流中元素需实现Comparable接口。
sorted(Comparator com):Comparator排序器自定义排序。

public void test18() {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
    personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
    personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 8800, 26, "male", "New York"));
    personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
    long count = personList.stream().map(Person::getSalary).distinct().count();
    System.out.println(count);
    personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName);
    // 按工资升序排序(自然排序)
    List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
            .collect(Collectors.toList());
    // 按工资倒序排序
    List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
            .map(Person::getName).collect(Collectors.toList());
    // 先按工资再按年龄升序排序
    List<String> newList3 = personList.stream()
            .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
            .collect(Collectors.toList());
    // 先按工资再按年龄自定义排序(降序)
    List<String> newList4 = personList.stream().sorted((p1, p2) -> {
        if (p1.getSalary() == p2.getSalary()) {
            return p2.getAge() - p1.getAge();
        } else {
            return p2.getSalary() - p1.getSalary();
        }
    }).map(Person::getName).collect(Collectors.toList());
    System.out.println("按工资升序排序:" + newList);
    System.out.println("按工资降序排序:" + newList2);
    System.out.println("先按工资再按年龄升序排序:" + newList3);
    System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}

15、提取/组合
流也可以进行合并、去重、限制、跳过等操作。

public void test19() {
    String[] arr1 = {"a", "b", "c", "d"};
    String[] arr2 = {"d", "e", "f", "g"};
    Stream<String> stream1 = Stream.of(arr1);
    Stream<String> stream2 = Stream.of(arr2);
    // concat:合并两个流 distinct:去重
    List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
    // limit:限制从流中获得前n个数据
    List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
    // skip:跳过前n个数据
    List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
    System.out.println("流合并:" + newList);
    System.out.println("limit:" + collect);
    System.out.println("skip:" + collect2);
}

16、collect详解

public class CollectTest {
    /**
     * stream.collect() 的本质由三个参数构成,
     * 1. Supplier 生产者, 返回最终结果
     * 2. BiConsumer<R, ? super T> accumulator 累加器
     * 第一个参数是要返回的集合, 第二个参数是遍历过程中的每个元素,
     * 将流中每个被遍历的元素添加到集合中
     * 3. BiConsumer<R, R> combiner 合并器, 在有并行流的时候才会有用, 一个流时代码不会走到这里
     * 将第二步遍历得到的所有流形成的list都添加到最终的list中,
     * 最后返回list1
     */
    @Test
    public void Test() {
        Stream<String> stream = Stream.of("hello", "world", "helloworld");
        // 最原始和基础的方式
        /*
        List<String> list = stream.collect(
                ()->new ArrayList(),
                (theList, item) -> theList.add(item),
                (list1, list2) -> list1.addAll(list2)
        );
        */
        // 打印出更详尽的过程
        List<String> listDetail = stream.collect(
                () -> {
                    ArrayList<String> arrayList = new ArrayList<>();
                    System.out.println("第一个list诞生, size: " + arrayList.size());
                    return arrayList;
                },
                (theList, item) -> {
                    System.out.println("第二个list的size: " + theList.size());
                    theList.add(item);
                },
                (list1, list2) -> {
                    System.out.println("第三个list1的size: " + list1.size());
                    System.out.println("第四个list2的size: " + list2.size());
                    list1.addAll(list2);
                }
        );
        /* 输出
            第一个list诞生, size: 0
            第二个list的size: 0
            第二个list的size: 1
            第二个list的size: 2
        * */
        // 使用方法引用来传递行为, 更加清晰易懂, new(新建) -> add(累加) -> addAll(合并)
        List<String> list2 = stream.collect(LinkedList::new, LinkedList::add, LinkedList::addAll);
        String concat = stream.collect(StringBuilder::new, StringBuilder::append, StringBuilder::append).toString();
        System.out.println(concat);
    }

    @Test
    public void Test2() {
        Stream<String> stream = Stream.of("hello", "world", "helloworld");
        // 这样的写法兼具灵活和简单
        ArrayList<String> list = stream.collect(Collectors.toCollection(ArrayList::new));
        TreeSet<String> treeSet = stream.collect(Collectors.toCollection(TreeSet::new));
        String s = stream.collect(Collectors.joining()); // 拼接成字符串
        HashMap<String, String> map = stream.collect(HashMap::new, (x, y) -> {
            x.put(y, y); // 自己做自己的key
        }, HashMap::putAll);
    }
}

17、flatMap

public void test() {
    List<String> teamIndia = Arrays.asList("Virat", "Dhoni", "Jadeja");
    List<String> teamAustralia = Arrays.asList("Warner", "Watson", "Smith");
    List<String> teamEngland = Arrays.asList("Alex", "Bell", "Broad");
    List<List<String>> playersInWorldCup2016 = new ArrayList<>();
    playersInWorldCup2016.add(teamIndia);
    playersInWorldCup2016.add(teamAustralia);
    playersInWorldCup2016.add(teamEngland);
    // Let's print all players before Java 8
    List<String> listOfAllPlayers = new ArrayList<>();

    for (List<String> team : playersInWorldCup2016) {
        for (String name : team) {
            listOfAllPlayers.add(name);
        }
    }
    System.out.println("Players playing in world cup 2016");
    System.out.println(listOfAllPlayers);
    // Now let's do this in Java 8 using FlatMap
    List<String> flatMapList = playersInWorldCup2016.stream()
//              .flatMap(pList -> pList.stream())
            .flatMap(List::stream)
            .collect(Collectors.toList());

    System.out.println("List of all Players using Java 8");
    System.out.println(flatMapList);
}

评论

暂无

添加新评论