SparkSQL

SparkSQL

一、SparkSQL 概述

1.1、SparkSQL 是什么

Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。

1.2、Hive and SparkSQL

SparkSQL 的前身是 Shark,给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。
Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop 的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:DrillImpalaShark

Shark 的出现,使得 SQL-on-Hadoop 的性能比 Hive 有了 10-100 倍的提高。

但是,随着 Spark 的发展,对于野心勃勃的 Spark 团队来说,Shark 对于 Hive 的太多依赖(如采用 Hive 的语法解析器、查询优化器等等),制约了 Spark 的 One Stack Rule Them All的既定方针,制约了 Spark 各个组件的相互集成,所以提出了 SparkSQL 项目。SparkSQL抛弃原有 Shark 的代码,汲取了 Shark 的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓退一步,海阔天空。

  • 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;
  • 性能优化方面 除了采取 In-Memory Columnar Storagebyte-code generation 等优化技术外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;
  • 组件扩展方面 无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩展。

2014 年 6 月 1 日 Shark 项目和 SparkSQL 项目的主持人 Reynold Xin 宣布:停止对 Shark 的开发,团队将所有资源放 SparkSQL 项目上,至此,Shark 的发展画上了句话,但也因此发展出两个支线:SparkSQLHive on Spark
其中 SparkSQL 作为 Spark 生态的一员继续发展,而不再受限于 Hive,只是兼容 Hive;而Hive on Spark 是一个 Hive 的发展计划,该计划将 Spark 作为 Hive 的底层引擎之一,也就是说,Hive 将不再受限于一个引擎,可以采用 Map-Reduce、Tez、Spark 等引擎。
对于开发人员来讲,SparkSQL 可以简化 RDD 的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是 SparkSQL。Spark SQL 为了简化 RDD 的开发,提高开发效率,提供了 2 个编程抽象,类似 Spark Core 中的 RDD。
DataFrame DataSet

1.3、SparkSQL 特点

1.3.1、易整合

无缝的整合了 SQL 查询和 Spark 编程。

1.3.2、统一的数据访问

使用相同的方式连接不同的数据源。

1.3.3、兼容 Hive

在已有的仓库上直接运行 SQL 或者 HiveQL。

1.3.4、标准数据连接

通过 JDBC 或者 ODBC 来连接。

1.4、DataFrame 是什么

在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame 所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。
同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要更加友好,门槛更低。

左侧的 RDD[Person] 虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待 DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化。比如下面一个例子:

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个 DataFrame,将它们 join 之后又做了一次 filter 操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为 join 是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将 filter 下推到 join 下方,先对 DataFrame 进行过滤,再 join 过滤后的较小的结果集,便可以有效缩短执行时间。而 Spark SQL 的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

1.5、DataSet 是什么

DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter 等等)。

  • DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象。
  • 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性。
  • 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet 中的字段名称。
  • DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。
  • DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将 DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序。

二、SparkSQL 核心编程

如何使用 Spark SQL 所提供的 DataFrame 和 DataSet 模型进行编程,以及了解它们之间的关系和转换,关于具体的 SQL 书写不是我们的重点。

2.1、新的起点

Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 SparkContext,Spark SQL 其实可以理解为对 Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。
在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark 自己提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。
SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext 的组合,所以在 SQLContex 和 HiveContext 上可用的 API 在 SparkSession 上同样是可以使用的。SparkSession 内部封装了 SparkContext,所以计算实际上是由 sparkContext 完成的。当我们使用 spark-shell 的时候, spark 框架会自动的创建一个名称叫做 spark 的 SparkSession 对象, 就像我们以前可以自动获取到一个 sc 来表示 SparkContext 对象一样

2.2、DataFrame

Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有 action 操作。

2.2.1、创建 DataFrame

在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame 有三种方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查询返回。
1)从 Spark 数据源进行创建

  • 查看 Spark 支持创建文件的数据源格式
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
  • 在 spark 的 bin/data 目录中创建 user.json 文件
{"username":"zhangsan","age":20}
  • 读取 json 文件创建 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和Long 类型转换,但是和 Int 不能进行转换

2)从 RDD 进行转换
见后续章节

3)从 Hive Table 进行查询返回
见后续章节

2.2.2、SQL 语法

SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
1)读取 JSON 文件创建 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

2)对 DataFrame 创建一个临时表

scala> df.createOrReplaceTempView("people")

3)通过 SQL 语句实现查询全表

scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

4)结果展示

scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi   |
| 40| wangwu |
+---+--------+

注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
5)对于 DataFrame 创建一个全局表

scala> df.createGlobalTempView("people")

6)通过 SQL 语句实现查询全表

scala> spark.sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi   |
| 40| wangwu |
+---+--------+
scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi   |
| 40| wangwu |
+---+--------+

2.2.3、DSL 语法

DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
1)创建一个 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2)查看 DataFrame 的 Schema 信息

scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)

3)只查看"username"列数据,

scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi   |
| wangwu |
+--------+

4)查看"username"列数据以及"age+1"数据
注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名

scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|(age + 1)|
+--------+---------+
|zhangsan| 21      |
| lisi   | 31      |
| wangwu | 41      |
+--------+---------+

5)查看"age"大于"30"的数据

scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu  |
+---+---------+

6)按照"age"分组,查看数据条数

scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1   |
| 30| 1   |
| 40| 1   |
+---+-----+

2.2.4、RDD 转换为 DataFrame

在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入 import spark.implicits._
这里的 spark 不是 Scala 中的包名,而是创建的 sparkSession 对象的变量名称,所以必须先创建 SparkSession 对象再导入。这里的 spark 对象不能使用 var 声明,因为 Scala 只支持val 修饰的对象的引入。
spark-shell 中无需导入,自动完成此操作。

scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
| 1 |
| 2 |
| 3 |
| 4 |
+---+

实际开发中,一般通过样例类将 RDD 转换为 DataFrame

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, 
t._2)).toDF.show
+--------+---+
| name   |age|
+--------+---+

2.2.5、DataFrame 转换为 RDD

DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, 
t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val rdd = df.rdd
rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[46] 
at rdd at <console>:25
scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

注意:此时得到的 RDD 存储类型为 Row

scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan

2.3、DataSet

DataSet 是具有强类型的数据集合,需要提供对应的类型信息。

2.3.1、创建 DataSet

1)使用样例类序列创建 DataSet

scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+---------+---+
| name    |age|
+---------+---+
| zhangsan| 2 |
+---------+---+

2)使用基本类型的序列创建 DataSet

scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1   |
| 2   |
| 3   |
| 4   |
| 5   |
+-----+

注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet。

2.3.2、RDD 转换为 DataSet

SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

2.3.3 DataSet 转换为 RDD

DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int] 
scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at 
<console>:25
scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))

2.4、DataFrame 和 DataSet 转换

DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。

DataFrame 转换为 DataSet

scala> case class User(name:String, age:Int)
defined class User
scala> val df = sc.makeRDD(List(("zhangsan",30), 
("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

DataSet 转换为 DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

2.5、RDD、DataFrame、DataSet 三者的关系

在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和 RDD 有什么区别呢?首先从版本的产生上来看:

  • Spark1.0 => RDD
  • Spark1.3 => DataFrame
  • Spark1.6 => Dataset

如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。

2.5.1、三者的共性

  • RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利。
  • 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到 Action 如 foreach 时,三者才会开始遍历运算。
  • 三者有许多共同的函数,如 filter,排序等;
  • 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._(在创建好 SparkSession 对象后尽量直接导入)。
  • 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出。
  • 三者都有 partition 的概念。
  • DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型。

2.5.2、三者的区别

  • RDD
    • RDD 一般和 spark mllib 同时使用
    • RDD 不支持 sparksql 操作
  • DataFrame
    • 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
    • DataFrame 与 DataSet 一般不与 spark mllib 同时使用
    • DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
    • DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解)
  • DataSet
    • Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
    • DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息

2.5.3、三者的互相转换

2.6、开发 SparkSQL、

详见代码

2.7 用户自定义函数

详见代码

2.8、数据的加载和保存

2.8.1、通用的加载和保存方式

SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式为 parquet。
1)加载数据
spark.read.load 是加载数据的通用方法

scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile

如果读取不同格式的数据,可以对不同的数据格式进行设定

scala> spark.read.format("…")[.option("…")].load("…")
  • format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"。
  • load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载数据的路径。
  • option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable我们前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,其实,我们也可以直接在文件上进行查询: 文件格式.文件路径
scala>spark.sql("select * from json.`/opt/module/data/user.json`").show

2)保存数据
df.write.save 是保存数据的通用方法

scala>df.write.
csv jdbc json orc parquet textFile… …

如果保存不同格式的数据,可以对不同的数据格式进行设定

scala>df.write.format("…")[.option("…")].save("…")
  • format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"。
  • save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。
  • option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable保存操作可以使用 SaveMode, 用来指明如何处理数据,使用 mode()方法来设置。有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。

SaveMode 是一个枚举类,其中的常量包括:

Scala/Java                      Any Language        Meaning
SaveMode.ErrorIfExists(default) "error"(default)    如果文件已经存在则抛出异常
SaveMode.Append                 "append"            如果文件已经存在则追加
SaveMode.Overwrite              "overwrite"         如果文件已经存在则覆盖
SaveMode.Ignore                 "ignore"            如果文件已经存在则忽略
df.write.mode("append").json("/opt/module/data/output")

2.8.2、Parquet

Spark SQL 的默认数据源为 Parquet 格式。Parquet 是一种能够有效存储嵌套数据的列式存储格式。
数据源为 Parquet 文件时,Spark SQL 可以方便的执行所有的操作,不需要使用 format。修改配置项 spark.sql.sources.default,可修改默认数据源格式。
1)加载数据

scala> val df = spark.read.load("examples/src/main/resources/users.parquet")
scala> df.show

2)保存数据

scala> var df = spark.read.json("/opt/module/data/input/people.json")
//保存为 parquet 格式
scala> df.write.mode("append").save("/opt/module/data/output")

2.8.3、JSON

Spark SQL 能够自动推测 JSON 数据集的结构,并将它加载为一个 Dataset[Row]. 可以通过 SparkSession.read.json()去加载 JSON 文件。
注意:Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串。格式如下:

{"name":"Michael"}
{"name":"Andy", "age":30}
[{"name":"Justin", "age":19},{"name":"Justin", "age":19}]

1)导入隐式转换

import spark.implicits._

2)加载 JSON 文件

val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)

3)创建临时表

peopleDF.createOrReplaceTempView("people")

4)数据查询

val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 
AND 19")
teenagerNamesDF.show()
+------+
| name |
+------+
|Justin|
+------+

2.8.4、CSV

Spark SQL 可以配置 CSV 文件的列表信息,读取 CSV 文件,CSV 文件的第一行设置为数据列

spark.read.format("csv").option("sep", ";").option("inferSchema", "true").option("header", "true").load("data/user.csv")

2.8.5、MySQL

Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,通过对DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。如果使用 spark-shell 操作,可在启动 shell 时指定相关的数据库驱动路径或者将相关的数据库驱动放到 spark 的类路径下。

bin/spark-shell 
--jars mysql-connector-java-5.1.27-bin.jar

详见代码。

2.8.6、Hive

Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到Spark 的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行。 需要注意的是,如果你没有部署好 Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
spark-shell 默认是 Hive 支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。

1)内嵌的 HIVE
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可.
Hive 的元数据存储在 derby 中, 默认仓库地址:$SPARK_HOME/spark-warehouse

scala> spark.sql("show tables").show
。。。
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
scala> spark.sql("create table aa(id int)")
。。。
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| aa      | false     |
+--------+---------+-----------+

向表加载本地数据

scala> spark.sql("load data local inpath 'input/ids.txt' into table aa")

在实际使用中, 几乎没有任何人会使用内置的 Hive。

2)外部的 HIVE
如果想连接外部已经部署好的 Hive,需要通过以下几个步骤:

  • Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下
  • 把 Mysql 的驱动 copy 到 jars/目录下
  • 如果访问不到 hdfs,则需要把 core-site.xmlhdfs-site.xml 拷贝到 conf/目录下
  • 重启 spark-shell
scala> spark.sql("show tables").show
20/04/25 22:05:14 WARN ObjectStore: Failed to get database global_temp, returning 
NoSuchObjectException
+--------+--------------------+-----------+
|database| tableName          |isTemporary|
+--------+--------------------+-----------+
| default| emp                | false     |
| default|hive_hbase_emp_table| false     |
| default| relevance_hbase_emp| false     |
| default| staff_hive         | false     |
| default| ttt                | false     |
| default| user_visit_action  | false     |
+--------+--------------------+-----------+

3)运行 Spark SQL CLI
Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似一 Hive 窗口。
bin/spark-sql

4)运行 Spark beeline
Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore进行交互,获取到 hive 的元数据。
如果想连接 Thrift Server,需要通过以下几个步骤:

  • Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下
  • 把 Mysql 的驱动 copy 到 jars/目录下
  • 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下
  • 启动 Thrift Server
    sbin/start-thriftserver.sh
  • 使用 beeline 连接 Thrift Server
    bin/beeline -u jdbc:hive2://linux1:10000 -n root

5)代码操作 Hive
详见代码

评论

暂无

添加新评论